Mechanisms of Evolution
Individuals don't evolve...

Individuals survive or don't survive...

Individuals are selected

Populations evolve
Variation and Natural Selection

Variation is the raw material for natural selection.

- There have to be differences within population.
- Some individuals must be more fit than others.
Where does variation come from?

- **Mutation**
 - Random changes to DNA.
 - Errors in mitosis and meiosis.
 - Environmental damage.

- **Sexual Reproduction**
 - Mixing of alleles
 - Recombination of alleles.
 - New arrangements in every offspring.
 - New combinations = new phenotypes.
 - Spreads variation
 - Offspring inherit traits from parent.
5 Agents of Evolutionary Change

- Mutation
- Gene Flow
- Non-random mating
- Genetic Drift
- Selection
Mutation and Variation

- Mutation creates **variation**.
 - New mutations are constantly appearing.

- Mutation **changes DNA sequence**.
 - Changes amino acid sequence.
 - Changes protein’s:
 - Structure
 - Function
 - Changes in protein may change phenotype and therefore change fitness.
Gene Flow

Movement of individuals and alleles in and out of populations.

- Seed and pollen distribution by wind and insect.
- Migration of animals.
 - Sub-populations may have different allele frequencies.
 - Causes **genetic mixing** across regions.
 - Reduce differences between populations.
Human Evolution Today

Gene flow in human populations is increasing today.

- Transferring alleles between populations.

Are we moving towards a blended world?
Non-random Mating

Sexual selection
Genetic Drift

Definition: a process in which chance events cause unpredictable fluctuations in allele frequencies from one generation to the next.

- Occurs in small populations.
- Examples: founder effect, bottleneck effect.
Genetic Drift: Founder Effect

When a new population is started by only a few individuals.

- Some rare alleles may be at high frequency; others may be missing.
- Skew the gene pool of new population.
 - Human populations that started from small group of colonists
 - Example: colonization of New World
Distribution of Blood Types

Distribution of the **O type** blood allele in *native* populations of the world reflects original settlement.
Genetic Drift: Bottleneck Effect

When large population is drastically reduced by a disaster.

- Famine, natural disaster, loss of habitat…
- Loss of variation by chance even.t
 - Alleles lost from gene pool.
 - Not due to fitness.
 - Narrows the gene pool.
Bottleneck Effect: Cheetahs

- All cheetahs share a small number of alleles.
 - Less than 1% diversity
 - As if all cheetahs are identical twins.

- Two bottlenecks
 - 10,000 years ago
 - Ice Age
 - Last 100 years
 - Poaching
 - Loss of habitat
Conservation issues

Bottlenecking is an important concept in conservation biology of endangered species.

- Loss of alleles from gene pool.
- Reduces variation.
- Reduces adaptability.

Breeding programs must consciously outcross.
Natural selection

Differential survival and reproduction due to changing environmental conditions.

- **Changing Environment**
 - Climate change
 - Food source availability
 - Predators, parasites, diseases
 - Toxins

- **Combinations of alleles** that provide **“fitness”**
 - **increase** in the population.
 - Adaptive evolutionary change.
Types of Selection

- **Directional Selection**
 - Before Selection
 - After Selection
 - Examples: giraffe neck, horse size

- **Stabilizing Selection**
 - Before Selection
 - After Selection
 - Examples: human birth weight

- **Disruptive Selection**
 - Before Selection
 - After Selection
 - Examples: rock pocket mice
Any Questions??